بسمەتعالى

Finite Element Method

S. Hatami

Homework #6 Method of Weighted Residuals

1. The following differential equation represents "One-dimensional heat conduction with linearly varying internal heat generation".

$$k_x A \frac{\mathrm{d}^2 T}{\mathrm{d}x^2} + Q_0 A x = 0$$

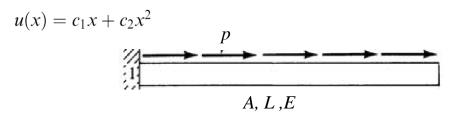
where k_x , Q_0 , and A are constants.

Formulate the finite element equations (that is, determine the stiffness matrix and load vectors) using Galerkin's finite element method for a two-node element of length L with the interpolation functions:

$$N_1(x) = 1 - \frac{x}{L} \qquad N_2(x) = \frac{x}{L}$$

Ref: Fundamentals of Finite Element Analysis, David V. Hutton, 2004.

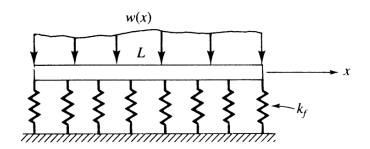
2. For the bar subjected to the uniform line load *p* in the axial direction shown in the figure, determine the displacements function using Galerkin's method. Choose a quadratic polynomial for displacement in the method as follows:



Ref: A First Course in the Finite Element Method, D. L. Logan, 5th Edition, 2011.

3. Derive the equations for the beam element on an elastic foundation (see Figure) using Galerkin's method. The basic differential equation for the beam on an elastic foundation is:

$$(EIv'')'' = -w + k_f v$$

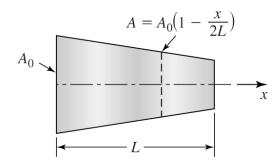


Ref: A First Course in the Finite Element Method, D. L. Logan, 5th Edition, 2011.

4. Consider a tapered uniaxial tension-compression member subjected to an axial load as shown in the figure.

The cross-sectional area varies as $A = A_0(1 - x/2L)$, where L is the length of the member and A0 is the area at x = 0.

Extract the governing differential equation for the axial displacement (u).



Ref: Fundamentals of Finite Element Analysis, David V. Hutton, 2004. (with some changes)